Quantum Bayesian Networks

June 24, 2018

Latest Investments in Quantum Computing Startups (May & June 2018)

Filed under: Uncategorized — rrtucci @ 3:38 am

It seems that quantum computing startups have hit a major money artery in the last 2 months. And that’s just the first half of the Summer. The Summer of 2018, with its blisteringly high temperatures of social activity in the US, is going to be one for the books. Movies will be made about it.

  1. QCWare, $6.5M

  2. QxBranch, $8.5M

  3. Yale qc, $16M in 4 yrs from ARO (Army Research Office, a political organization, like all US federal agencies)

  4. Strangeworks, $4M

  5. Zapata, $5.4M

  6. Xanadu, $9M

  7. gtn.ai, $3M
Advertisements

June 15, 2018

Quantum Edward, models with complex-valued layers

Filed under: Uncategorized — rrtucci @ 4:31 am

The Quantum Edward Python lib (its github repo here), in its first version, comes with 2 models called NbTrolsModel and NoNbTrolsModel. However, the lib is written with enough generality so that you can also run it with other models of your own devising. A model describes a quantum circuit for a QNN (Quantum Neural Network) which is split into layers.

Below is an excerpt from the docstring for the QEdward class called NbTrolsModel. The excerpt gives the quantum circuit for the NbTrolsModel


    ...
    Below we represent them in Qubiter ASCII
    picture notation in ZL convention, for nb=3 and na=4
    [--nb---]   [----na-----]
    NbTrols (nb Controls) model:
    |0> |0> |0> |0> |0> |0> |0>
    NOTA P(x) next
    |---|---|---|---|---|---Ry
    |---|---|---|---|---Ry--%
    |---|---|---|---Ry--%---%
    |---|---|---Ry--%---%---%
    NOTA P(y|x) next
    |---|---Ry--%---%---%---%
    |---Ry--%---%---%---%---%
    Ry--%---%---%---%---%---%
    M   M   M

    A gate |---|---Ry--%---%---%---% is called an MP_Y Multiplexor,
    or plexor for short. In Ref.1 (Qubiter repo at github), see Rosetta Stone
    pdf and Quantum CSD Compiler folder for more info about multiplexors.

If you look up the definition of a multiplexor in the Qubiter repo and references therein, you will notice that a multiplexor is a real-valued gate. Hence this model, since it only uses multiplexor gates, does not parametrize the full family of complex-valued amplitudes that are allowed in quantum mechanics. The NbTrolsModel does parametrize the whole family of possible (real-valued) probability distributions P(y|x) and P(x), where x = (q3, q2, q1, q0) and y = (q6, q5, q4), where qi is an element of 0, 1 for i=0,1,2,…6

So how can we generalize the model NbTrolsModel so that it parametrizes all possible complex-valued amplitudes too. One possibility is as follows. (call it the C_NbTrolsModel)


    |0> |0> |0> |0> |0> |0> |0>
    NOTA A(x) next
    |---|---|---|---|---|---Ry
    |---|---|---|---|---|---%
    |---|---|---|---|---Ry--%
    |---|---|---|---|---%---%
    |---|---|---|---Ry--%---%
    |---|---|---|---%---%---%
    |---|---|---Ry--%---%---%
    |---|---|---%---%---%---%
    NOTA A(y|x) next
    |---|---Ry--%---%---%---%
    |---|---%---%---%---%---%
    |---Ry--%---%---%---%---%
    |---%---%---%---%---%---%
    Ry--%---%---%---%---%---%
    %---%---%---%---%---%---%
    M   M   M

This new model contains twice as many layers as the old one. Each multiplexor gate from the old model has been followed by a “diagonal unitary” gate consisting of only % or | symbols, for instance,

|---|---|---%---%---%---%

. You can look up the definition of such a gate in the Qubiter repo, in the same places where you found the def of a multiplexor. In this example, D =

 %---%---%---%

represents a 2^4=16 dimensional diagonal unitary matrix and I_8 =

 |---|---|

represents the 2^3=8 dimensional unit matrix. The whole gate is I_8 \otimes D, which is a 2^7=128 diagonal unitary matrix.

To motivate what is going on in this C_NbTrolsModel model, let me claim without proof that the first two lines of the circuit parametrize a complex amplitude A(q0), the next two lines A(q1|q0), the next two A(q2|q1, q0) and so forth.

If x = (q3, q2, q1, q0) and y = (q6, q5, q4), then

A(x) = A(q3|q2, q1, q0)A(q2|q1, q0)A(q1|q0)A(q0)

A(y|x) = A(q6|q5, q4)A(q5|q4)A(q4)

A(y, x) = A(y| x) A(x).

This is just a generalization of the chain rule for probabilities which for 3 random variables is

P(c, b, a) = P(c|b, a) P(b | a) P(a)

To go from the chain rule for probabilities to the chain rule for amplitudes, we just take the square root of all the probabilities and add a bunch of relative phase factors, leading to

A(c, b, a) = A(c|b, a) A(b | a) A(a)

Warning: Note that the expansion of a multiplexor (and of a diagonal unitary) into elementary gates (cnots and single qubit rotations) contains a huge number of gates (exp in the number of controls). However, such expansions can be shortened by approximating the multiplexor (or the diagonal unitary) using, for instance, the technique of Ref.2: Oracular Approximation of Quantum Multiplexors and Diagonal Unitary Matrices, by Robert R. Tucci, https://arxiv.org/abs/0901.3851 Another possible source of simplification: just like

P(c, b, a) = P(c|b, a) P(b | a) P(a)

represents a fully connected graph which simplifies to

P(c, b, a) = P(c| a) P(b | a) P(a)

if c is independent of b, in the same way, the chain rule in these QdEdward models might simplify due to certain conditional independences in the data.

Added July 11, 2018: Of course, this can all be generalized by making q0 a qudit with d0 states, q1 a qudit with d1 states, etc. Qudit q0 can be represented by n0 qubits, where n0 is the smallest int such that d0 ≤ 2^n0, same for qudit q1, q2, etc.

In Qubiter, the Quantum CSD Compiler decomposes an arbitrary unitary matrix into a product of multiplexors and diagonal unitaries. Qubiter also allows you to decompose multiplexors and diagonal unitaries into elementary ops (CNOTs and single qubit rotations). For example, Qubiter's CSD compiler will expand an arbitrary 3 qubit unitary matrix into the following:


%---%---%   
%---%---Ry  
%---%---%   
%---Ry--%   
%---%---%   
%---%---Ry  
%---%---%   
Ry--%---%   
%---%---%   
%---%---Ry  
%---%---%   
%---Ry--%   
%---%---%   
%---%---Ry  
%---%---% 

Hence, a QNN is like a portion of the expansion of an arbitrary unitary matrix.

When one uses complex-valued layers, the definition of ELBO must be in terms of density matrices, not classical prob distributions.

June 8, 2018

June 8, 2018, Toronto Quantum Computing Meetup, Next Event on: VIRTUAL ORCHESTRAS–AI AUGMENTED MUSIC

Filed under: Uncategorized — rrtucci @ 4:46 am

The Toronto Quantum Computing Meetup cordially invites you to a very special evening/ meetup TODAY, Friday, June 8, 2018. The Event is entitled “Virtual Orchestras — AI Augmented Music”.

Ian Andtek (once called Simon Bemudez) is a talented pianist and all around musician plus a highly skilled AI/Machine-Learning and graphics programmer. Born and raised in Venezuela, he is now a proud Canadian citizen. He will be giving a concert with his one-man, AI simulated orchestra at our usual venue/hangout, Zero Gravity Labs (free pizza? yes)

We are really pleased and honored that Ian is a member of our company artiste-qb.net. Our company is now more than just a company dedicated to quantum computing software. We aim to become an all around AI/ML company, with special emphasis in Bayesian Networks and TensorFlow, both quantum and classical. So combining music and AI falls well within our Jeff Bezos-Ian sized plans.

Below is Ian playing a musical piece composed by himself, called Ilusiones (Illusions)

June 4, 2018

June 22, 2018, Toronto Quantum Computing Meetup, Next Event On Quantum Machine Learning

Filed under: Uncategorized — rrtucci @ 7:14 am

The Toronto Quantum Computing Meetup cordially invites you to our next meeting on Friday, June 22, 2018. The Event will be on Quantum Machine Learning, specially about the software program Quantum Edward. Here is a pdf of the talk (I wrote it, but it will be delivered by someone else on my behalf)

http://www.ar-tiste.com/quantum_ed_talk/QuantumEdwardTalk.pdf

Typical slide from deck. I chose a pastel background color scheme to remind the audience of ice cream, gelato, etc.

edward_talk_chain_rule

Blog at WordPress.com.

%d bloggers like this: