Quantum Bayesian Networks

March 26, 2019

Explanation of Automatic Differentiation (from paper by Hai-Jun Liao, Jin-Guo Liu, Lei Wang, Tao Xiang)

Filed under: Uncategorized — rrtucci @ 4:22 am

In my latest blog posts, I’ve been advocating for the use of back-propagation in quantum computing. Today, by coincidence, I came across this very impressive paper and software applying back-propagation to tensor networks in physics.

https://arxiv.org/abs/1903.09650
“Differentiable Programming Tensor Networks”,
by Hai-Jun Liao, Jin-Guo Liu, Lei Wang, Tao Xiang

The authors are mostly from CAS (Chinese Academy of Science) in Beijing. Nice work like this convinces me that China is producing top quality work in AI and physics. I am very happy that Dr. Tao Yin, one of the cofounders of our startup, artiste-qb.net, is Chinese, currently living in Shenzhen. The paper in question has a very nice section explaining auto differentiation. Blogs make nice scrapbooks, so I copied that section and present it below.




Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: